
 Tutorial on HLA RTI 1.3

Defense Modeling & Simulation Office
(703) 998-0660 Fax (703) 998-0667
hla@msis.dmso.mil
http://www.dmso.mil/

Current as of 01 April 98

Integrated Training Program

HLA RTI 1.3
Mod 2
20 March 98 2

HLA Is DoD’s
Technical Architecture

for Modeling & Simulation

• The High Level Architecture (HLA) was approved as DoD’s
technical architecture for modeling and simulation on 10
September 1996

• The HLA is intended to be applied to a variety of kinds of
distributed simulations, among them:
- Analytic

- Human-in-the-loop

- Engineering

• The HLA contains a runtime infrastructure (RTI) component,
which is the chief subject of this briefing

HLA RTI 1.3
Mod 2
20 March 98 3

DMSO Has Sponsored Development
of Several Versions of the RTI

• F.0 is the “familiarization version” funded by DMSO and
delivered in December 1996

• F.0 implements most of the HLA Interface Spec, except:
- Data distribution management

- Advanced federation management, e.g. save and restore

• F.0 is designed to run on any IP network and to be ported easily
among Unix boxes

• F.0 was designed primarily to be correct, but the need for speed
was not ignored

• 1.0 completes implementation of Federation Management
services and has improved performance

• 1.3 implements Data Distribution Management

HLA RTI 1.3
Mod 2
20 March 98 4

Tutorial Is Designed to
Help You Understand the

RTI Generally and 1.3 in Particular

• We’ll use RTI 1.3 as an example: something concrete makes
explanations easier

• We’ll try to point out what’s specific to the 1.3 design and
what’s inherent in the RTI Interface Specification

• The code examples are from the Java API

HLA RTI 1.3
Mod 2
20 March 98 5

Some Terminology

• Federation: a set of simulations, a common federation object
model, and supporting RTI, that are used together to form a
larger model or simulation

• Federate: a member of a federation; one simulation
- Could represent one platform, like a cockpit simulator

- Could represent an aggregate, like an entire national simulation of
air traffic flow

• Federation Execution: a session of a federation executing
together

HLA RTI 1.3
Mod 2
20 March 98 6

Some More Terminology

• Object: An entity in the domain being simulated by a federation
that
- Is of interest to more than one federate

- Is handled by the Runtime Infrastructure

• Interaction: a non-persistent, time-tagged event generated by
one federate and received by others (through RTI)

• Attribute: A named datum (defined in Federation Object Model)
associated with each instance of a class of objects

• Parameter: A named datum (defined in Federation Object
Model) associated with each instance of a class of interactions

HLA RTI 1.3
Mod 2
20 March 98 7

Rationale for
HLA Design: Composability

• Basic premises
- No single, monolithic simulation can satisfy the needs of all users

- All uses of simulations and useful ways of combining them cannot
be anticipated in advance

- Future technological capabilities and a variety of operating
configurations must be accommodated

• Consequence: Need composable approach to constructing
simulation federations

• Resulting design principles
- Federations of simulations constructed from modular components

with well-defined functionality and interfaces

- Specific simulation functionality separated from general purpose
supporting runtime infrastructure

HLA RTI 1.3
Mod 2
20 March 98 8

HLA Comprises Three Components:
Rules, Runtime Infrastructure, Templates

• HLA Rules: A set of rules which must be followed to achieve
proper interaction of federates during a federation execution.
These describe the responsibilities of federates and of the
runtime infrastructure in HLA federations

• Interface Specification: Definition of the interface services
between the runtime infrastructure and the federates subject to
the HLA

• Object Model Templates: The prescribed common method for
recording the information contained in the required HLA Object
Model for each federation and federate

HLA RTI 1.3
Mod 2
20 March 98 9

A Federation
Must Play by the Rules

1. Federations shall have an HLA Federation Object Model (FOM),
documented in accordance with the HLA Object Model
Template (OMT)

2. In a federation, all representation of objects in the FOM shall
be in the federates, not in the runtime infrastructure (RTI)

3. During a federation execution, all exchange of FOM data
among federates shall occur via the RTI

4. During a federation execution, federates shall interact with the
runtime infrastructure (RTI) in accordance with the HLA
interface specification

5. During a federation execution, an attribute of an instance of an
object shall be owned by only one federate at any given time

HLA RTI 1.3
Mod 2
20 March 98 10

Each Federate
Must Play By the Rules

6. Federates shall have an HLA Simulation Object Model (SOM),
documented in accordance with the HLA Object Model
Template (OMT)

7. Federates shall be able to update and/or reflect any attributes
of objects in their SOM and send and/or receive SOM object
interactions externally, as specified in their SOM

8. Federates shall be able to transfer and/or accept ownership of
attributes dynamically during a federation execution, as
specified in their SOM

9. Federates shall be able to vary the conditions (e.g.,
thresholds) under which they provide updates of attributes of
objects, as specified in their SOM

10. Federates shall be able to manage local time in a way which
will allow them to coordinate data exchange with other
members of a federation

Architecture Splits
Functions Between

Simulations and Runtime Infrastructure

Live
Participants

Runtime Infrastructure

Data Collector/
Passive Viewer

Simulation
SurrogateSimulations

Federation Management Declaration Management
Object Management Ownership Management
Time Management Data Distribution Management

C++
Ada-95

CORBA IDL
Java

HLA RTI 1.3
Mod 2, Update 1
01 April 98 11

Integrated Training Program

HLA RTI 1.3
Mod 2
20 March 98 12

Run-Time Infrastructure
Provides Six Categories of Services

Category Functionality

Federation Management

• Create and delete federation executions
• Join and resign federation executions
• Control checkpoint, pause, resume,

restart

Declaration Management • Establish intent to publish and subscribe
to object attributes and interactions

Object Management

• Create and delete object instances
• Control attribute and interaction

publication
• Create and delete object reflections

Ownership Management • Transfer ownership of objects/attributes
Time Management • Coordinate the advance of logical time

and its relationship to real time

Data Distribution
Management

• Controls the efficient routing of
information between federates

HLA RTI 1.3
Mod 2
20 March 98 13

In RTI 1.3, a Federate Process
Contains Federate and RTI Code

Federate Federate
Ambassador

RTI Ambassador

Federate Federate
Ambassador

RTI Ambassador

Network

HLA RTI 1.3
Mod 2
20 March 98 14

Some RTI Services Are
Initiated by Federate, Some by RTI

Federate
Ambassador

RTI Ambassador

• Interfaces are method calls on objects (C++, Ada-95, IDL, Java)
• Federate-initiated serves are invoked on an instance of

RTIambassador
• RTI-initiated services are invoked on an instance of

FederateAmbassador

Federate

HLA RTI 1.3
Mod 2
20 March 98 15

In the Beginning,
There’s an RTI Executive...

• RTI Executive is a 1.3-supplied
server started by hand

• It’s an artifact of 1.3 design, not
inherent in RTIs

• There is usually 1 Executive per
LAN

• RTI Executive is a naming service
for federation executions

RTI Executive

HLA RTI 1.3
Mod 2
20 March 98 16

A Federate, Acting as a
Federation Execution Manager,
Creates a Federation Execution

RTI
ExecutiveFedEx

Federate Federate
Ambassador

RTI Ambassador

• Federate invokes createFederationExecution on its RTI
Ambassador

• RTI Ambassador reserves name with RTI Executive

• RTI Ambassador spawns FedEx process

• FedEx registers its communication address with RTI Executive

HLA RTI 1.3
Mod 2
20 March 98 17

Other Federates Join
the Federation Execution

RTI
ExecutiveFedEx

• Another federate invokes joinFederationExecution on its RTI
Ambassador

• RTI Ambassador consults RTI Executive for address of
FedEx

• RTI Ambassador invokes joinFederationExecution on FedEx
• This arrangement of separate processes for RTIexec and

FedEx is an RTI 1.3 artifact

HLA RTI 1.3
Mod 2
20 March 98 18

Federation Object
Model (FOM) Defines

Each Federation’s Realm of Discourse

• Data passed between federates by the RTI is entirely parametric
to the RTI

• This contrasts with DIS, where a new data item means a new
PDU and changes to DIS infrastructure

• FOM describes the kinds of things federates will talk about in a
federation including: objects and interactions

• FOM is agreed by federation designers before execution

• Parts of the FOM are supplied, at execution time, as data to the
RTI
- In 1.3, the FOM data takes the form of <fedexname>.fed, for

“federation execution data”

- File must be stored in a place accessible to each federate; where
federate looks is a configuration item

HLA RTI 1.3
Mod 2
20 March 98 19

FOM Defines Classes of Objects

• Each object class specifies the set of attributes for each
instance of that class

• One object class can inherit from another

Aircraft

Position

CivilAircraft

DrinkCartsOnBoard

MilitaryAircraft

BombsOnBoard

HLA RTI 1.3
Mod 2
20 March 98 20

A Modest Example of
Federation Execution Data (FED)

• The FED contains the RTI-relevant part of the FOM

(FED ...

 (objects

 (objectRoot …

 (attribute privilegeToDelete reliable timestamp)

 (class Aircraft

 (attribute Position best_effort timestamp))

 (class CivilAircraft

 (attribute DrinkCartsOnBoard ...))

 (class MilitaryAircraft

 (attribute BombsOnBoard ...))

...

)

HLA RTI 1.3
Mod 2
20 March 98 21

Interactions
Represent Events in Time

• An interaction represents an event in time that has no
continuing state, e.g. a change in an ATC clearance or the firing
of a weapon

• An interaction, unlike an object does not persist; it occurs at a
specified time

• Federates subscribe to classes of interactions. They are then
notified when another federate sends an interaction of that
class

• Each interaction class specifies the set of parameters for each
instance of that class

• Like object classes, one interaction class can inherit from
another

HLA RTI 1.3
Mod 2
20 March 98 22

Federation Management Services

4.2 Create Federation Execution
4.3 Destroy Federation Execution
4.4 Join Federation Execution
4.5 Resign Federation Execution
4.6 Register Federation Synchronization Point
4.7 Confirm Synchronization Point Registration †
4.8 Announce Synchronization Point †
4.9 Synchronization Point Achieved
4.10 Federation Synchronized †

4.11 Request Federation Save
4.12 Initiate Federate Save †
4.13 Federate Save Begun
4.14 Federate Save Complete
4.15 Federation Saved †
4.16 Request Federation Restore
4.17 Confirm Federation Restoration Request †
4.18 Federation Restore Begun †
4.19 Initiate Federate Restore †
4.20 Federate Restore Complete
4.21 Federation Restored †

HLA RTI 1.3
Mod 2
20 March 98 23

Object Management:
Creating and Updating Objects,

Sending and Receiving Interactions

• Refers to management of objects in the RTI: instances of
classes defined in the FOM

• Federates create and destroy instances dynamically. Instances
have IDs unique across the life of a federation execution
- int objectHandle = rtiamb.registerObject(airClassHandle);

• RTI signals federate when relevant instances are created by
other federates: creates a reflection

 public void discoverObject (
 int objectHandle,
 int objectClassHandle)
 throws
 CouldNotDiscover,
 ObjectClassNotKnown,
 FederateInternalError;

HLA RTI 1.3
Mod 2
20 March 98 24

Object Management Lets
Federates See Each Other’s Objects

RTI

• This is a publish-and-subscribe service
- It’s parameterized by FED at execution time,

- Adjusted by each federate dynamically,

- It’s subject to time management (about which more later).

Federate A
creates obj 1
 reflects 2, 3

Federate B
creates obj 2, 3

reflects 1

Federate C
reflects 1, 2, 3

HLA RTI 1.3
Mod 2
20 March 98 25

Object Management Services

5.2 Publish Object Class

5.3 Unpublish Object Class

5.4 Publish Interaction Class

5.5 Unpublish Interaction Class

5.6 Subscribe Object Class Attributes

5.7 Unsubscribe Object Class

5.8 Subscribe Interaction Class

5.9 Unsubscribe Interaction Class

5.10 Start Registration For Object Class †

5.11 Stop Registration For Object Class †

5.12 Turn Interactions On †

5.13 Turn Interactions Off †

HLA RTI 1.3
Mod 2
20 March 98 26

A Contract for Data
Generation and Reception is

Made Using Declaration Management

• To begin receiving updates of an attribute, a federate must
declare its interest in the attribute (It can also declare the end of
its interest)

• Applies as well to classes of interactions

• The RTI uses that information to tell producing federates
whether to bother updating an attribute or producing
interactions of a given class

HLA RTI 1.3
Mod 2
20 March 98 27

Example: Publish
and Subscribe a Class

int airClassHandle = rtiamb.getObjectClassHandle("Aircraft");
int airPVAhandle = rtiamb.getAttributeHandle("Position",
 airClassHandle);
AttributeHandleSet airAttrSet = AHsetFactory.create();
airAttrSet.add(airPVAhandle);
rtiamb.subscribeObjectClassAttribute(
airClassHandle, airAttrSet, true /* active subscription */);

rtiamb.publishObjectClass(airClassHandle, airAttrSet);

• “Publish” says the federate intends to create instances of the
class and update attributes of those instances

• “Subscribe” says the federate desires to reflect some
attributes of the class

• In the example below, the federate publishes and subscribes
the same attribute of the same class: it’s creating some
aircraft and reflecting others

HLA RTI 1.3
Mod 2
20 March 98 28

Inheritance in FOM Classes
Insulates Federates From FOM Changes

• If a federate subscribes to attributes of “Aircraft” it will reflect
those attributes of any subclasses

• Therefore FOMs can be extended (subclassed) without
unconcerned federates having to change

Aircraft

Position

CivilAircraft

DrinkCartsOnBoard

MilitaryAircraft

BombsOnBoard

HLA RTI 1.3
Mod 2
20 March 98 29

Exchanging Data with
Other Federates Means

Updating and Reflecting Attributes

• Update an attribute of a registered object:
 ahvp.empty();
 ahvp.add(airPVAhandle, someData, 0, someData.length);
 int eventRetractionHandle = rtiamb.updateAttributeValues(
 objectId, ahvp, lastGrantedTime + increment, userTag);

• Receive (“reflect”) an update on a federate ambassador:
public void reflectAttributeValues (
 int objectHandle,
 AttributeHandleValuePairSet theAttributes,
 FederationTime theTime,
 UserSuppliedTag theTag,
 int eventRetractionHandle)
throws
 ObjectNotKnown,
 AttributeNotKnown,
 InvalidFederationTime,
 FederateInternalError;

HLA RTI 1.3
Mod 2
20 March 98 30

Transport for Attribute
Updates and Interactions

is Either Reliable or Best-Effort

RTI 1.3 uses multiple exploders
for reliable comm: TCP/IP streams

Best-effort traffic via IP multicast

HLA RTI 1.3
Mod 2
20 March 98 31

Ownership Management
Allows Shared Responsibility

for Simulating an Object

• Each attribute of each object has an owner: the owner is the
federate responsible for updating that attribute

• Different attributes of the same object may have different
owners. One federate is updating an aircraft’s position; another
federate, subscribing to the position, is updating icing

• “Privilege to delete” an object is an attribute owned by some
federate

• Ownership can change: responsibility for updating an attribute
can pass from one federate to another. E.g., an aircraft
modeled in an aggregate simulation could transfer ownership
of the position attribute to a cockpit

• Ownership exchange may be pushed or pulled

HLA RTI 1.3
Mod 2
20 March 98 32

Ownership May Be
Pushed to Another Federate

HLA Run Time Infrastructure

Federate wishing to
give up ownership

Federate accepting
ownership

step 1
Negotiated

Attribute
Ownership
Divestiture

step 4

Attribute
Ownership
Divestiture
Notification

step 2
Request

Attribute
Ownership

Assumption

step 4

Attribute
Ownership
Acquisition
Notification

Runtime Infrastructure

step 3

Attribute
Ownership
Acquisition
If Available

 †
 †

HLA RTI 1.3
Mod 2
20 March 98 33

Ownership May Be
Pulled from Another Federate

HLA Run Time Infrastructure

Federate wishing to
acquire ownership

step 1
Attribute

Ownership
Acquisition

step 4
Attribute
Ownership
Acquisition

Runtime Infrastructure

step 3
Attribute
Ownership
Release
Response
(success)Notification †

step 2
Request
Attribute

Ownership
Release †

Federate releasing
ownership

HLA RTI 1.3
Mod 2
20 March 98 34

Time Management
Seeks to Synchronize

the Logical Time of Federates

• Events have associated times:
- Update of attributes

- Sending of interactions

- Deletion of objects

• Fundamental problem is to ensure that either:
- No federate receives an event in its past (conservative approach) or

- A federate that has computed into the future, when it receives an
event in its past that invalidates its state, has the information
necessary to roll back to the time of the event (optimistic approach)

HLA RTI 1.3
Mod 2
20 March 98 35

Time Management

• Another approach, used in “real-time” simulations à la DIS, is to
ignore time management and deem events to occur when they
are perceived
- Federate’s time is computed from its host wall clock

- This cannot guarantee strict causality

- If latencies on the delivery of events are bounded, this may be good
enough for human perception

• The Interface Specification characterizes time management by
two Boolean “switches” set by each federate:
- Time-regulating

- Time-constrained

HLA RTI 1.3
Mod 2
20 March 98 36

Time Management
Seeks to Accommodate Variety

of Schemes in a Single Federation

Strictly Time-Synchronized:
conservative (ALSP) and
aggressive (Time Warp)

Unconstrained (DIS)
operating with

conservative federates

Viewer or Federation
Management Tool:

stays synchronized to
federation, but generates

no events

Externally Synchronized
 Simulation:

no time management
from RTI’s standpoint

(DIS)

Time-Regulating
true false

T
im

e-
C

o
n

st
ra

in
ed tr

u
e

fa
ls

e

HLA RTI 1.3
Mod 2
20 March 98 37

Optimistic Federates Must Be
Ready to Retract Their Events

• An optimistic federate turns time-regulating and time-
constrained on. The optimistic federate invokes
FlushQueueRequest, is given all pending events, and is granted
to latest safe time

• Each time the federate creates an event (creates or destroys an
object, updates an attribute, sends an interaction), it receives
from its RTI ambassador an EventRetractionHandle
- Federate must remember the retraction handles

- If an event arrives in the federate’s past causing it to roll back, it
must invoke rtiamb.retract(EventRetractionHandle)

- Any RTI Ambassador that has delivered the event to its federate will
invoke reflectRetraction(ERH) on its Federate Ambassador

HLA RTI 1.3
Mod 2
20 March 98 38

Receive-Order Attributes
and Interactions Bypass the

RTI Ambassador Time Queues

• Attributes and interactions can be designated as receive-order
rather than time-stamp-order

• Receive-order attributes and interactions are delivered
immediately by the RTI Ambassador to the federate,
irrespective of the federate’s value of local time

• A federate operating with “time regulating” off will send all its
attribute updates and interactions in receive order, irrespective
of the FED specification

• A federate operating with “time constrained” off will treat all
arriving attribute updates and interactions as receive-order,
irrespective of the sending federate’s specification

HLA RTI 1.3
Mod 2
20 March 98 39

Management Object Model (MOM)
Exploits RTI for Management

of Federation Execution

• Federation Executions are managed by a combination of
Federate- and RTI-supplied information

• This information can be structured using the same tools used
for simulation data

• The MOM defines classes and interactions related to federation
management just as the FOM defines classes and interactions
in the simulation domain

• A manager federate can
- Monitor and control aspects of the federation through the MOM

- Subscribe to MOM object classes and interactions exactly as it
would to parts of any FOM

• The RTI-supplied aspects of the MOM will be standardized

• Federate-supplied MOM data depends on the federation needs

HLA RTI 1.3
Mod 2
20 March 98 40

MOM Data Must Be
Included in Any FED File

(FED
 (...
)
 (class Manager
 (class Federate
 ...
 (attribute FederateHandle reliable receive)
 (attribute FederateType reliable receive)
 (attribute FederateHost reliable receive)
 (attribute RTIversion reliable receive)
 (attribute FEDid reliable receive)
 (attribute TimeContrained reliable receive)
 (attribute TimeRegulating reliable receive)
 ...
)
)
)
...
)

Manager federate
can subscribe
to these attributes

An object of this class is created
each time a federate joins

HLA RTI 1.3
Mod 2
20 March 98 41

Interactions to Control
the Federation Execution

(FED
 (objects
 ...
)
 (interactions
 (class Manager reliable receive
 (class Federate reliable receive
 (parameter Federate)
 ...
 (class Adjust reliable receive
 ...
 (class ModifyAttributeState reliable receive
 (parameter ObjectInstance)
 (parameter Attribute)
 (parameter AttributeState)
 ...
)
)
)
)
)
)

By sending interactions
with values for these parameters,
manager federates can change
behavior of another portion of the
RTI

“Process Model” Refers
to the Way Threads of Control

Interact Between Federate and RTI

• The process model of an RTI is not defined by the Interface
Specification

• A design requirement of 1.3 is that it support a strictly single-
threaded federate

• RTI Ambassador is in the federate’s process space; in a single-
threaded language, it gets no thread of control unless federate
gives it one

• Federate calls rtiamb.tick() periodically to allow RTI
Ambassador to read its sockets and to initiate callbacks on the
Federate Ambassador

• Federate is prevented from calling the RTI Ambassador
recursively from a callback (in most instances)

HLA RTI 1.3
Mod 2, Update 1
01 April 98 42

Integrated Training Program

HLA RTI 1.3
Mod 2
20 March 98 43

Updating the
Attributes of an Object

1 Is this object known to the RTI?

2 Has the class been published?

3 Are all the attributes owned?

4 Is the time valid?

5 Create a retraction handle and
return the service call.

6 Assign desired transportation
category to each attribute.

Federate Federate
Ambassador

RTI Ambassador

Federate Federate
Ambassador

RTI Ambassador

Network

7 Find ordering category and assign
to each attribute.

8 If regulation off, then force ordering
category to arrival order.

9 Write best-effort attributes to one of
the IP multicast group assigned for
the federation execution.

10 Send reliable attributes to reliable
distributor.

HLA RTI 1.3
Mod 2
20 March 98 44

Receiving
Attributes of an Object

Federate Federate
Ambassador

RTI Ambassador

Federate Federate
Ambassador

RTI Ambassador

Network

1 Accept a new message from
either an IP multicast group or a
reliable distributor.

2 If constrained ON and update is
TSO then place in the TSO queue;
else place in the FIFO queue.

3 At right time, remove appropriate
messages from the queues.

4 If registered object class is not a
subclass subscribed to by the
federate, then discard the update.

5 Promote the registered class to a
represented class and remove any
inappropriate attributes.

6 Provide attributes to the federate.

HLA RTI 1.3
Mod 2
20 March 98 45

For Further Information...

• Main HLA Web page:
http://www.dmso.mil/projects/hla/
- HLA Overview Briefing (Annotated)

- AMG Briefings

- Related SIW publications

- Dr. Kaminski’s HLA mandate memo

- RTI software request form

• Send comments or questions to: hla @dmso.mil

